skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kulkarni, Gajanan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study explores the dynamic self-assembly and disassembly of hypervalent iodine-based macrocycles (HIMs) guided by secondary bonding interactions. The reversible disassembly and reassembly of HIMs are facilitated through anion binding via the addition of tetrabutylammonium (TBA) salts or removal of the anion by the addition of silver nitrate. The association constants for HIM monomers with TBA(Cl) and TBA(Br) are calculated and show a correlation with the strength of the iodine–anion bond. A unique tetracoordinate hypervalent iodine-based compound was identified as the disassembled monomer. Last, the study reveals the dynamic bonding nature of these macrocycles in solution, allowing for rearrangement and participation in dynamic bonding chemistry. 
    more » « less
  2. New cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs) based on tetracene have been prepared by a palladium-catalyzed cyclopentannulation reaction. The new compounds have low-energy lowest unoccupied molecular orbitals (LUMOs) and relatively small band gaps. The photooxidative stability was intermediate to previously prepared CP-PAHs based on anthracene and pentacene as found in traditional acene stabilities. Scholl cyclodehydrogenation of pendant aryl groups led to materials that quickly formed endoperoxide products. 
    more » « less